
Security Assessment

ButterSwap
Jun 9th, 2021

Table of Contents
Summary

Overview

Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings

BFC-01 : Missing Emit Events

BFC-02 : Unnecessary Array as Counter

BPC-01 : Replace Libraries with Inherited Contract in Contract Template

BPC-02 : Variable Declare as `Immutable`

BPC-03 : Divide by Zero

BTC-01 : Does Not Move Delegates While Transferring Token

CTC-01 : Does Not Move Delegates While Transferring Token

MCC-01 : add() Function Not Restricted

MCC-02 : `Checks-effects-interactions` Pattern Not Used

MCC-03 : Variable Naming Convention

MCC-04 : Recommended Explicit Pool Validity Checks

MCC-05 : Missing Emit Events

MCC-06 : Unknown Implementation of `migrator.migrate()`

MCC-07 : Over Minted Token

MCC-08 : Incompatibility With Deflationary Tokens

MCC-09 : Lack of Input Validation

SCC-01 : `Checks-effects-interactions` Pattern Not Used

SCC-02 : Missing Emit Events

SCC-03 : Redundant Variable

Appendix

ButterSwap Security Assessment

Disclaimer

About

ButterSwap Security Assessment

Summary
This report has been prepared for ButterSwap smart contracts, to discover issues and vulnerabilities in

the source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Manual Review

and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We

suggest recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

ButterSwap Security Assessment

Overview

Project Summary

Project Name ButterSwap

Platform Heco

Language Solidity

Codebase

https://github.com/butter-swap/butter-swap-farm

https://github.com/butter-swap/butter-swap-core

https://github.com/butter-swap/butter-swap-periphery

Commits

butter-swap-farm: 87558e358302ed3dee80b0b152449998d36cbfc9

butter-swapcore: 02d785381610b5a64f1f623b24a3ec5db330cb88

butter-swap-periphery:

d167939a0c065c968fe085bbaa962dab6c79c785

Audit Summary

Delivery Date Jun 09, 2021

Audit Methodology Manual Review, Static Analysis

Key Components

ButterSwap Security Assessment

Vulnerability Summary

Total Issues 19

Critical 0

Major 5

Medium 0

Minor 6

Informational 8

Discussion 0

ButterSwap Security Assessment

Audit Scope

ID file SHA256 Checksum

BTC
butter-farm/contracts/ButterTok

en.sol
90bcc9e251fa6d358ea200fb005af67b3f741473be63e8b2d2e6971bc734d626

CTC
butter-farm/contracts/CreamTok

en.sol
815cf09c4479592fc76994b0b502f0605bfa6cdb7fd10d2cbb60f7c0160d2d6d

MCC
butter-farm/contracts/MasterCh

ef.sol
5298ec776b33781f8aaa9a2afbec69130a6ff2a3c51444ddfac5e0b9482ef41a

MCK
butter-farm/contracts/Migration

s.sol
4fd6092bdfa8b42f19d535c5ac69c4323b0b894717c699e58d5552eeabd04cd4

SCC
butter-farm/contracts/SousChef.

sol
fb5eabf60dce395ace6d6e00eb80cf30415c195f9a74d09be1ed10990f4740bb

BER
butter-swap-core/contracts/Butt

erERC20.sol
e7db8c9602c7d010a3e0cd84450231b866908415203765e97ec5b27f1f0e95a1

BFC
butter-swap-core/contracts/Butt

erFactory.sol
74710416d4f81374867a52da81583e60db47172768692facac6e31f5e5a4d1fd

BPC
butter-swap-core/contracts/Butt

erPair.sol
78eff4beabf78415d2c68e0ff250c997f3c69d08c2858365e53e0db219b57019

BMC
butter-swap-periphery/contracts

/ButterMigrator.sol
542dc42e61e028e91f2390c55d4e08e56456a82ca9eed3ffefe112cf9362eb99

BRC
butter-swap-periphery/contracts

/ButterRouter.sol
187d552beba8037703e87991b20d12d92ac8dc704fdc158e359a280ceb93f983

BRK
butter-swap-periphery/contracts

/ButterRouter01.sol
44d9d9e3359616b0a6316101899f7d383316b0d0b4eb0dc9678228916a7f8ea7

ButterSwap Security Assessment

Findings

ID Title Category Severity Status

BFC-01 Missing Emit Events Gas Optimization Informational Acknowledged

BFC-02 Unnecessary Array as Counter Gas Optimization Informational Acknowledged

BPC-01
Replace Libraries with Inherited

Contract in Contract Template
Gas Optimization Minor Acknowledged

BPC-02 Variable Declare as Immutable Gas Optimization Informational Acknowledged

BPC-03 Divide by Zero Logical Issue Minor Acknowledged

BTC-01
Does Not Move Delegates While

Transferring Token

Centralization /

Privilege
Major Acknowledged

CTC-01
Does Not Move Delegates While

Transferring Token

Centralization /

Privilege
Major Acknowledged

MCC-01 add() Function Not Restricted Volatile Code Major Resolved

MCC-02
Checks-effects-interactions

Pattern Not Used
Logical Issue Major Resolved

MCC-03 Variable Naming Convention Coding Style Informational Resolved

MCC-04
Recommended Explicit Pool Validity

Checks
Logical Issue Informational Acknowledged

ButterSwap Security Assessment

Critical 0 (0.00%)

Major 5 (26.32%)

Medium 0 (0.00%)

Minor 6 (31.58%)

Informational 8 (42.11%)

Discussion 0 (0.00%)

19
Total Issues

ID Title Category Severity Status

MCC-05 Missing Emit Events Gas Optimization Informational Acknowledged

MCC-06
Unknown Implementation of

migrator.migrate()
Logical Issue Minor Acknowledged

MCC-07 Over Minted Token Logical Issue Minor Acknowledged

MCC-08 Incompatibility With Deflationary Tokens Logical Issue Minor Acknowledged

MCC-09 Lack of Input Validation Volatile Code Minor Resolved

SCC-01
Checks-effects-interactions

Pattern Not Used
Logical Issue Major Resolved

SCC-02 Missing Emit Events Gas Optimization Informational Acknowledged

SCC-03 Redundant Variable Gas Optimization Informational Acknowledged

ButterSwap Security Assessment

BFC-01 | Missing Emit Events

Category Severity Location Status

Gas

Optimization
Informational

butter-swap-core/contracts/ButterFactory.sol: 42(Butter

Factory), 47(ButterFactory)
Acknowledged

Description

The function that affects the status of sensitive variables should be able to emit events as notifications

to customers.

setMigrator()

emergencyWithdraw()

safeButterTransfer()

dev()

setFeeTo()

setFeeToSetter()

stopReward()

Recommendation

Consider adding events for sensitive actions, and emit them in the function.

eventevent SetDevSetDev((addressaddress indexedindexed user user,, addressaddress indexedindexed _devaddr _devaddr));;

functionfunction devdev((addressaddress _devaddr _devaddr)) publicpublic {{
requirerequire((msgmsg..sender sender ==== devaddr devaddr,, "dev: wut?""dev: wut?"));;

 devaddr devaddr == _devaddr _devaddr;;
emitemit SetDevSetDev((msgmsg..sendersender,, _devaddr _devaddr));;

}}

ButterSwap Security Assessment

BFC-02 | Unnecessary Array as Counter

Category Severity Location Status

Gas

Optimization
Informational

butter-swap-core/contracts/ButterFactory.sol: 13(Butter

Factory)
Acknowledged

Description

The allPairs array is used as a counter to maintain the number of created pairs.

Recommendation

We advise the client to replace the allPairs with a simple uint type counter to store the number of

pairs created.

ButterSwap Security Assessment

BPC-01 | Replace Libraries with Inherited Contract in Contract Template

Category Severity Location Status

Gas Optimization Minor butter-swap-core/contracts/ButterPair.sol: (ButterPair) Acknowledged

Description

Libraries UQ112x112 , SafeMath and Math will be inherited by the contract ButterPair.sol every time a

new pair is created, which will cost extra gas on creating new pairs.

Recommendation

We advise the client to include all functions of these libraries in the ButterPair.sol directly to save

gas on creating new pairs.

Alleviation

The development team replied that, the operation "Create pair" is not frequently used. They don't want

to optimize this gas cost by decreasing code readability and cleanliness

ButterSwap Security Assessment

BPC-02 | Variable Declare as Immutable

Category Severity Location Status

Gas

Optimization
Informational

butter-swap-core/contracts/ButterPair.sol: 18(ButterPai

r)
Acknowledged

Description

Variable that only be assigned in constructor can be declare as immutable . Immutable state variables

can be assigned during contract creation, but will remain constant throughout the life-time of a

deployed contract. The big advantage of immutable is that reading them is significantly cheaper than

reading from regular state variables, since immutable variables will not be stored in storage, but their

values will be directly inserted into the runtime code.

Recommendation

We recommend using immutable state variable for factory

addressaddress immutable immutable publicpublic factory factory;;

ButterSwap Security Assessment

BPC-03 | Divide by Zero

Category Severity Location Status

Logical Issue Minor butter-swap-core/contracts/ButterPair.sol: 143~145(ButterPair) Acknowledged

Description

The call to burn() function will fail if the value of totalSupply is 0.

Recommendation

We advise the client to add the following validation in the function burn()

requirerequire((totalSupply totalSupply !=!= 00,, "The value of totalSupply must not be 0""The value of totalSupply must not be 0"));;

Alleviation

The development team replied that, adding the require check will consume more gas, in real use case,

they will make sure burn is called only when totalSupply is not zero.

ButterSwap Security Assessment

BTC-01 | Does Not Move Delegates While Transferring Token

Category Severity Location Status

Centralization /

Privilege
Major

butter-farm/contracts/ButterToken.sol: (ButterToke

n)
Acknowledged

Description

In essence, ButterToken and CreamToken governance lets token holders delegate their voting power to

another entity. However, if that token holder then transfers the tokens to someone else, the delegator

still maintains their governance power. The second token holder can now delegate tokens once again,

multiplying the delegator’s power by as much as necessary. The bug is that the token transfer does not

call _moveDelegates() .

Recommendation

Consider adding call of _moveDelegates() in the function _transfer() , _burn() and other functions

that affects the token balance. Also make sure that _delegates mapping is correctly initialized,

otherwise, delegation will be moved to address 0.

Alleviation

The development team replied that the issue is left over by pancake, and they currently do not need

voting. They will deliver modified code for audit when they do need voting.

ButterSwap Security Assessment

CTC-01 | Does Not Move Delegates While Transferring Token

Category Severity Location Status

Centralization /

Privilege
Major

butter-farm/contracts/CreamToken.sol: (CreamToke

n)
Acknowledged

Description

In essence, ButterToken and CreamToken governance lets token holders delegate their voting power to

another entity. However, if that token holder then transfers the tokens to someone else, the delegator

still maintains their governance power. The second token holder can now delegate tokens once again,

multiplying the delegator’s power by as much as necessary. The bug is that the token transfer does not

call _moveDelegates() .

Recommendation

Consider adding call of _moveDelegates() in the function _transfer() , _burn() and other functions

that affects the token balance. Also make sure that _delegates mapping is correctly initialized,

otherwise, delegation will be moved to address 0.

Alleviation

The development team replied that the issue is left over by pancake, and they currently do not need

voting. They will deliver modified code for audit when they do need voting.

ButterSwap Security Assessment

MCC-01 | add() Function Not Restricted

Category Severity Location Status

Volatile Code Major butter-farm/contracts/MasterChef.sol: 124~137(MasterChef) Resolved

Description

When adding the same LP token more than once. Rewards will be messed up if you do.

The total amount of reward in function updatePool() will be incorrectly calculated if the same LP token

is added into the pool more than once in function add() .

However, the code does not reflect as the comment behaviors as there isn’t any valid restriction on

preventing this issue.

The current implementation is relying on the trust of the owner to avoid repeatedly adding same LP

token to the pool, as the function will only be called by the owner.

Recommendation

Detect whether the given pool for addition is a duplicate of an existing pool. The pool addition is only

successful when there is no duplicate. Using a mapping of addresses -> booleans , which can

restricted the same address being added twice.

Alleviation

The team heeded our advice and removed the function in commit

d2fd6d290bd5a489ed472be893d54d7382205089.

ButterSwap Security Assessment

MCC-02 | Checks-effects-interactions Pattern Not Used

Category Severity Location Status

Logical

Issue
Major

butter-farm/contracts/MasterChef.sol: 228(MasterChef), 250(MasterChe

f), 271(MasterChef), 292(MasterChef)
Resolved

Description

During deposit() , withdraw() , enterStaking() and leaveStaking() functions call, state variables for

balance are changed after transfers are done. This might lead to reentrancy issue. The order of

external call/transfer and storage manipulation must follow checks-effects-interactions pattern.

Recommendation

It is recommended to follow checks-effects-interactions pattern for cases like this. It shields public

functions from re-entrancy attacks. It's always a good practice to follow this pattern. checks-effects-

interactions pattern also applies to ERC20 tokens as they can inform the recipient of a transfer in

certain implementations.

Reference: https://docs.soliditylang.org/en/develop/security-considerations.html?highlight=check-

effects%23use-the-checks-effects-interactions-pattern

Alleviation

The team heeded our advice and removed the function in commit

d2fd6d290bd5a489ed472be893d54d7382205089.

ButterSwap Security Assessment

MCC-03 | Variable Naming Convention

Category Severity Location Status

Coding Style Informational butter-farm/contracts/MasterChef.sol: 71(MasterChef) Resolved

Description

The linked variable BONUS_MULTIPLIER do not conform to the standard naming convention of Solidity

whereby functions and variable names utilize the format unless variables are declared as constant in

which case they utilize the format.

Recommendation

We advise that the naming conventions utilized by the linked statements are adjusted to reflect the

correct type of declaration according to the Solidity style guide.

Alleviation

The team heeded our advice and removed the function in commit

d2fd6d290bd5a489ed472be893d54d7382205089.

ButterSwap Security Assessment

MCC-04 | Recommended Explicit Pool Validity Checks

Category Severity Location Status

Logical

Issue
Informational

butter-farm/contracts/MasterChef.sol: 140(MasterChef), 171

(MasterChef), 188(MasterChef), 209(MasterChef), 228(Mast

erChef), 250(MasterChef), 312(MasterChef)

Acknowledged

Description

There's no sanity check to validate if a pool is existing.

Recommendation

Consider to adopt following modifier validatePoolByPid to functions set() , migrate() , deposit() ,

withdraw() , emergencyWithdraw() , pendingButter()and updatePool() .

11 modifiermodifier validatePoolByPidvalidatePoolByPid((uint256uint256 _pid _pid)) {{
22 requirerequire ((_pid _pid << poolInfo poolInfo .. length length ,, "Pool does not exist""Pool does not exist")) ;;
33 __;;
44 }}

ButterSwap Security Assessment

MCC-05 | Missing Emit Events

Category Severity Location Status

Gas

Optimization
Informational

butter-farm/contracts/MasterChef.sol: 166(MasterChef),

312(MasterChef), 323(MasterChef), 328(MasterChef)
Acknowledged

Description

The function that affects the status of sensitive variables should be able to emit events as notifications

to customers.

setMigrator()

emergencyWithdraw()

safeButterTransfer()

dev()

setFeeTo()

setFeeToSetter()

stopReward()

Recommendation

Consider adding events for sensitive actions, and emit them in the function.

eventevent SetDevSetDev((addressaddress indexedindexed user user,, addressaddress indexedindexed _devaddr _devaddr));;

functionfunction devdev((addressaddress _devaddr _devaddr)) publicpublic {{
requirerequire((msgmsg..sender sender ==== devaddr devaddr,, "dev: wut?""dev: wut?"));;

 devaddr devaddr == _devaddr _devaddr;;
emitemit SetDevSetDev((msgmsg..sendersender,, _devaddr _devaddr));;

}}

ButterSwap Security Assessment

MCC-06 | Unknown Implementation of migrator.migrate()

Category Severity Location Status

Logical Issue Minor butter-farm/contracts/MasterChef.sol: 177(MasterChef) Acknowledged

Description

This protocol has external dependencies. setMigrator() function can set migrator contract to any

contract that implements IMigratorChef interface by the owner. As a result, invocation of

migrator.migrate() in function migrate() may bring dangerous effects as it is unknown to the user.

Recommendation

Make sure the third-party implementations and the way these functions are called can meet the

requirements.

Alleviation

The development team replied that, this methods(setMigrator) can only be called by owner, and they

will make sure the _migrator is safe.

ButterSwap Security Assessment

MCC-07 | Over Minted Token

Category Severity Location Status

Logical Issue Minor butter-farm/contracts/MasterChef.sol: 221~222(MasterChef) Acknowledged

Description

The updatePool() function over mint the reward in the contract MasterChef .

devaddr address mint the butterReward * 10%

address(cream) mint the butterReward(100%)

So total butterReward minted is 100% + 10% = 110%.

Recommendation

Fix to mint 100% of the block reward instead of 100% + 10%.

Alleviation

The development team replied that, they didn't invent this. This is intentionally designed for the good of

eco-system and investor, other famous DEX such as Pancake also has this mechanism.

ButterSwap Security Assessment

MCC-08 | Incompatibility With Deflationary Tokens

Category Severity Location Status

Logical

Issue
Minor

butter-farm/contracts/MasterChef.sol: 228(MasterChef), 250(Mast

erChef)
Acknowledged

Description

The MasterChef contract operates as the main entry for interaction with staking users. The staking

users deposit LP tokens into the Butter pool and, in return, get a proportionate share of the pool’s

rewards. Later on, the staking users can withdraw their own assets from the pool. In this procedure,

deposit() and withdraw() are involved in transferring users’ assets into (or out of) the Butter

protocol. When transferring standard ERC20 deflationary tokens, the input amount may not be equal to

the received amount due to the charged (and burned) transaction fee. As a result, this may not meet

the assumption behind these low-level asset-transferring routines and will bring unexpected balance

inconsistencies.

Recommendation

Regulate the set of LP tokens supported in MasterChef contract and, if there is a need to support

deflationary tokens, add necessary mitigation mechanisms to keep track of accurate balances.

Alleviation

The development team replied that, HT(Huobi Token) is used as transaction fee, and LP token will not

be changed as fee during deposit and withdraw.

ButterSwap Security Assessment

MCC-09 | Lack of Input Validation

Category Severity Location Status

Volatile

Code
Minor

butter-farm/contracts/MasterChef.sol: 97(MasterChef), 330(MasterChe

f)
Resolved

Description

Missing validation for the input variables _devaddr in function MasterChef.constructor() and

MasterChef.dev() .

Recommendation

Consider adding below checks to ensure these input variables are not equal to address(0) :

functionfunction devdev((addressaddress _devaddr _devaddr)) publicpublic {{
requirerequire((msgmsg..sender sender ==== devaddr devaddr,, "dev: wut?""dev: wut?"));;
requirerequire((_devaddr _devaddr !=!= addressaddress((00)),, "dev： _devaddr is zero address""dev： _devaddr is zero address"));;

 devaddr devaddr == _devaddr _devaddr;;
}}

Alleviation

The team heeded our advice and removed the function in commit

d2fd6d290bd5a489ed472be893d54d7382205089.

ButterSwap Security Assessment

SCC-01 | Checks-effects-interactions Pattern Not Used

Category Severity Location Status

Logical Issue Major butter-farm/contracts/SousChef.sol: 125(SousChef), 148(SousChef) Resolved

Description

During deposit() , withdraw() , enterStaking() and leaveStaking() functions call, state variables for

balance are changed after transfers are done. This might lead to reentrancy issue. The order of

external call/transfer and storage manipulation must follow checks-effects-interactions pattern.

Recommendation

It is recommended to follow checks-effects-interactions pattern for cases like this. It shields public

functions from re-entrancy attacks. It's always a good practice to follow this pattern. checks-effects-

interactions pattern also applies to ERC20 tokens as they can inform the recipient of a transfer in

certain implementations.

Reference: https://docs.soliditylang.org/en/develop/security-considerations.html?highlight=check-

effects%23use-the-checks-effects-interactions-pattern

Alleviation

The team heeded our advice and removed the function in commit

d2fd6d290bd5a489ed472be893d54d7382205089.

ButterSwap Security Assessment

SCC-02 | Missing Emit Events

Category Severity Location Status

Gas Optimization Informational butter-farm/contracts/SousChef.sol: 79(SousChef) Acknowledged

Description

The function that affects the status of sensitive variables should be able to emit events as notifications

to customers.

setMigrator()

emergencyWithdraw()

safeButterTransfer()

dev()

setFeeTo()

setFeeToSetter()

stopReward()

Recommendation

Consider adding events for sensitive actions, and emit them in the function.

eventevent SetDevSetDev((addressaddress indexedindexed user user,, addressaddress indexedindexed _devaddr _devaddr));;

functionfunction devdev((addressaddress _devaddr _devaddr)) publicpublic {{
requirerequire((msgmsg..sender sender ==== devaddr devaddr,, "dev: wut?""dev: wut?"));;

 devaddr devaddr == _devaddr _devaddr;;
emitemit SetDevSetDev((msgmsg..sendersender,, _devaddr _devaddr));;

}}

ButterSwap Security Assessment

SCC-03 | Redundant Variable

Category Severity Location Status

Gas Optimization Informational butter-farm/contracts/SousChef.sol: 51(SousChef) Acknowledged

Description

The variable startBlock is only initialized and never used.

Recommendation

Consider to remove this variable, and directly initialize poolInfo.lastRewardBlock with _startBlock .

ButterSwap Security Assessment

ButterSwap Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash

Algorithm 2 with digest size of 256 bits) digest of the content of each file hosted in the listed source

repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

ButterSwap Security Assessment

ButterSwap Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without CertiK’s prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value of

any “product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with

any particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position

is that each company and individual are responsible for their own due diligence and continuous

security. CertiK’s goal is to help reduce the attack vectors and the high level of variance associated

with utilizing new and consistently changing technologies, and in no way claims any guarantee of

security or functionality of the technology we agree to analyze.

ButterSwap Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-

class technical expertise, alongside our proprietary, innovative tech, we’re able to support the success

of our clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

ButterSwap Security Assessment

