
Security Assessment

ButterSwap II
Aug 17th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
BCB-01 : Lack Of Input Validation

BCB-02 : Meaningless Validation

BCB-03 : Privileged Ownership

BCB-04 : Missing Emit Events

BCB-05 : Proper Usage of `public` And `external` Type

BCB-06 : Lack Of Judgment Conditions

BCB-07 : Missing checks of `_startBlock`

BCB-08 : Logical issue of the reward amount `treasury` sent to `BoardChef`

BCB-09 : Centralization Risk

BCB-10 : Lack of reasonable boundary

BDB-01 : Boolean Equality

BDB-02 : Code Reuse

BDB-03 : Meaningless Calculation

BDB-04 : Proper Usage of `public` And `external` Type

BDB-05 : Missing Emit Events

BDB-06 : Privileged Ownership

BDB-07 : Logical issue of `leaveStake`

BDB-08 : Centralization Risk

BTB-01 : Proper Usage of `public` And `external` Type

BTB-02 : Privileged Ownership

BVB-01 : Missing Emit Events

BVB-02 : Missing Zero Address Validation

BVB-03 : Discussion For `withdraw` Function

DAO-01 : Privileged Ownership

LLC-01 : Meaningless Validation

LLC-02 : Divide Before Multiply

LLC-03 : Integer Overflow Risk

ButterSwap II Security Assessment

LLC-04 : Missing Zero Address Validation

LLC-05 : Risk For Weak Randomness

LLC-06 : Proper Usage of `public` And `external` Type

LLC-07 : Redundant Data

LLC-08 : Privileged Ownership

Appendix

Disclaimer

About

ButterSwap II Security Assessment

Summary
This report has been prepared for ButterSwap II to discover issues and vulnerabilities in the source code of

the ButterSwap II project as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

Additionally, this audit is based on a premise that all external contracts were implemented safely.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

ButterSwap II Security Assessment

Overview

Project Summary

Project Name ButterSwap II

Platform Heco

Language Solidity

Codebase https://github.com/butter-swap/butter-swap-farm/tree/master/contracts

Commit
8c16ba093a2eb401e0955674a7eaed05ad4b6b90
74258d82b5822fb4ffbe15d028b74fb068cd9322

Audit Summary

Delivery Date Aug 17, 2021

Audit Methodology Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 2 0 0 2 0 0

Medium 0 0 0 0 0 0

Minor 5 0 0 5 0 0

Informational 25 0 11 5 1 8

Discussion 0 0 0 0 0 0

ButterSwap II Security Assessment

https://github.com/butter-swap/butter-swap-farm/tree/master/contracts

Audit Scope

ID File SHA256 Checksum

BCB contracts/BoardChef.sol
c3695c0ec5b59fc601d3c9f607d9a8988ced7c3c86274911c4e04e630
91482db

BTB contracts/BoardToken.sol
3145122df2b7e4233db3ba07b9c85afade5c1ee5fd02fb362a03171e2
d83b66b

BDB contracts/ButterDao.sol
39ee6fa3c5af743554c7528fb4a609f6bb64cbcb8bfaaaf7ae61b61633
aa5e4f

BVB contracts/ButterVault.sol
392d5637c3449a2039a266e28d30a8ec4a1a364613357aad828538dc
b1444ab3

DAO contracts/DAOToken.sol
d38c8e6a01a5f167e393054ce3e31f2acb691ce4eb013624e96fd62b9
3848cf5

IBD contracts/IButterDao.sol
765747b818a615d42722fd2919bf44afd5b6ac1971aee367a0ef8bfee8
2804dd

ILL contracts/ILuckyLucky.sol
556968c6bd5eaf8c89b4d62b7daa71924cdedc406b7ea6ffef177c2b8
9f869cb

IMC contracts/IMasterChef.sol
ba461eb9f575f72e5bda17ecaf9a09fb2243c2a7dfdd00aead45927a0c
533004

IRN
contracts/IRandomNumberGenera
tor.sol

bcc2ea4ccc78794fdd1f8b849c5a271d2e00da2a3db510d124dda0fa6
1cba79e

LLC contracts/LuckyLuckyChef.sol
a928fd801fbb2dc489c14b80a25a3d507775c83db942d431650cb0c8
4abe3fae

PBS contracts/Pausable.sol
ea6e62a6711763fe9afbfec47c7f9d21f447e31967212bc92caf272810d
5e756

RNG
contracts/RandomNumberGenerat
or.sol

660ca0f92d6721dff2e072c3cff71803c964cec8d42dc6ea4caa76d497
dcec70

ButterSwap II Security Assessment

Understandings

Overview

The BoardToken is a standard HRC20 contract, the owner of contract can mint tokens to any account and

burn tokens from any account.

The BoardChef is a mining contract, users can stake boardToken to obtain reward token.

The DAOToken is a standard HRC20 contract, the owner of contract can mint tokens to any account and

burn tokens from any account. When users get daoToken , they will get the same amount of delegated

voting which allows them to participate in community governance. When they transfer daoToken to other

accounts, they will lose the same amount of delegated voting.

In the ButterDao contract, users can stake creamToken , the staked amount must be larger than 0.1% of

butter total supply at the first time. After users have staked, they can obtain the same amount of daoToken

and boardToken and become the member of daoMembers . Similarly, users can use the same amount of

daoToken and boardToken to exchange creamToken that they staked. If users transfer some daoToken or

boardToken to others, the same amount of creamToken cannot be withdrawn. Users can only call

emergencyWithdraw function to withdraw the creamToken with the same amount of daoToken and

boardToken they had.

In the ButterVault contract, users can deposit butterToken and obtain related shares. The contract will

stake the tokens deposited by users to the masterChef contract. When users withdraw tokens, the

contract will charge some fees. The fee ratio is different based on whether the user is a member of

daoMembers . Members charge 0.1%, others charge 0.2%, 50% of the fees will be transferred to the dead

address, and the rest will be transferred to the treasury.

Users can call the harvest function to extract the contract's mining revenue to masterChef contract, and

the contract will transfers 5% of the mining revenue to users as the reward.

In the LuckyLuckyChef contract, the admin of the contract can start the lottery. During the activity, users

can deposit boardToken to participate in the lottery. The contract will calculate power based on the

amount deposited by users. power = amount * (endBlock - startBlock) . And the admin will randomly

draw a lucky address based on users' power after the activity ends to win the reward. If users withdraw all

the tokens, they will lose the chance of winning the lottery reward.

All the values mentioned above can be referenced only since they can be changed by the owner at any

time.

ButterSwap II Security Assessment

Privileged Functions

The project contains the following privileged functions that are restricted by some modifiers. They are used

to modify the contract configurations and address attributes. We grouped these functions below:

The onlyOwner modifier:

Contract BoardChef :

function stopReward()

function emergencyRewardWithdraw()

Contract BoardToken :

function mint(address _to, uint256 _amount)

function burn(address _from, uint256 _amount)

Contract ButterDao :

function switchCondition(bool _turnOn)

function changeThresholdDivider(uint256 _thresholdDivider)

Contract DAOToken :

function mint(address _to, uint256 _amount)

function burn(address _from, uint256 _amount)

Contract ButterVault :

function setAdmin(address _admin)

function setTreasury(address _treasury)

function setBurnThreshold(uint256 _burnThreshold)

Contract LuckyLuckyChef :

function setAdmin(address _admin)

function updateRewardPerPeriod(uint256 _rewardPerPeriod)

function withdrawRewardToken(uint256 _amount)

The onlyAdmin modifier:

Contract ButterVault :

ButterSwap II Security Assessment

function setCallFee(uint256 _callFee)

function setWithdrawFeePeriod(uint256 _withdrawFeePeriod)

function setPerformanceFee(uint256 _performanceFee)

function setWithdrawFee(uint256 _withdrawFee)

function setWithdrawFeeBoard(uint256 _withdrawFeeBoard)

function emergencyWithdraw()

function inCaseTokensGetStuck(address _token)

function pause()

function unpause()

Contract LuckyLuckyChef :

function startNewLucky(uint256 _endBlock)

function finishLuckyInternal()

function finishLucky(uint256 _seed)

The whenNotPaused modifier:

Contract ButterVault :

function deposit(uint256 _amount)

function harvest()

function pause()

The whenPaused modifier:

Contract ButterVault :

function unpause()

The initializer modifier:

Contract LuckyLuckyChef :

function initialize(address _IRandomNumberGenerator)

The onlyRandomGenerator modifier:

Contract LuckyLuckyChef :

function numbersDrawn(uint256 _totalPower, bytes32 _requestId, uint256 _randomNumber)

ButterSwap II Security Assessment

Findings

ID Title Category Severity Status

BCB-01 Lack Of Input Validation Logical Issue Informational Declined

BCB-02 Meaningless Validation Logical Issue Informational Declined

BCB-03 Privileged Ownership
Centralization /
Privilege

Minor Acknowledged

BCB-04 Missing Emit Events Coding Style Informational Declined

BCB-05 Proper Usage of public And external Type Gas Optimization Informational Resolved

BCB-06 Lack Of Judgment Conditions Logical Issue Informational Resolved

BCB-07 Missing checks of _startBlock Logical Issue Informational Resolved

BCB-08
Logical issue of the reward amount treasury
sent to BoardChef

Logical Issue Informational Acknowledged

BCB-09 Centralization Risk
Centralization /
Privilege

Major Acknowledged

BCB-10 Lack of reasonable boundary Volatile Code Informational Acknowledged

BDB-01 Boolean Equality Coding Style Informational Resolved

BDB-02 Code Reuse Coding Style Informational Declined

BDB-03 Meaningless Calculation Coding Style Informational Declined

BDB-04 Proper Usage of public And external Type Gas Optimization Informational
Partially

Resolved

ButterSwap II Security Assessment

32
Total Issues

Critical 0 (0.00%)

Major 2 (6.25%)

Medium 0 (0.00%)

Minor 5 (15.63%)

Informational 25 (78.13%)

Discussion 0 (0.00%)

ID Title Category Severity Status

BDB-05 Missing Emit Events Coding Style Informational Declined

BDB-06 Privileged Ownership
Centralization /
Privilege

Minor Acknowledged

BDB-07 Logical issue of leaveStake Logical Issue Informational Acknowledged

BDB-08 Centralization Risk
Centralization /
Privilege

Major Acknowledged

BTB-01 Proper Usage of public And external Type Gas Optimization Informational Declined

BTB-02 Privileged Ownership
Centralization /
Privilege

Minor Acknowledged

BVB-01 Missing Emit Events Coding Style Informational Declined

BVB-02 Missing Zero Address Validation Logical Issue Informational Resolved

BVB-03 Discussion For withdraw Function Logical Issue Informational Acknowledged

DAO-01 Privileged Ownership
Centralization /
Privilege

Minor Acknowledged

LLC-01 Meaningless Validation Logical Issue Informational Declined

LLC-02 Divide Before Multiply
Mathematical
Operations

Informational Resolved

LLC-03 Integer Overflow Risk
Mathematical
Operations

Informational Resolved

LLC-04 Missing Zero Address Validation Logical Issue Informational Declined

LLC-05 Risk For Weak Randomness Logical Issue Informational Acknowledged

LLC-06 Proper Usage of public And external Type Gas Optimization Informational Resolved

LLC-07 Redundant Data Logical Issue Informational Declined

LLC-08 Privileged Ownership
Centralization /
Privilege

Minor Acknowledged

ButterSwap II Security Assessment

BCB-01 | Lack Of Input Validation

Category Severity Location Status

Logical Issue Informational contracts/BoardChef.sol: 59 Declined

Description

The given input _boardToken ,_rewardToken is missing the sanity check for the non-zero address and

_startBlock ,_bonusEndBlock is missing the sanity check for the value size in the aforementioned line.

Recommendation

We recommend adding the check for the passed-in values to prevent unexpected error as below:

constructor():

11 requirerequire((_boardToken _boardToken !=!= addressaddress((00)),, "_boardToken address cannot be 0""_boardToken address cannot be 0"));;
22 requirerequire((_rewardToken _rewardToken !=!= addressaddress((00)),, "_rewardToken address cannot be 0""_rewardToken address cannot be 0"));;
33 requirerequire((_startBlock _startBlock << _bonusEndBlock _bonusEndBlock,, "_startBlock must less than _bonusEndBlock""_startBlock must less than _bonusEndBlock"));;

Alleviation

No alleviation.

ButterSwap II Security Assessment

BCB-02 | Meaningless Validation

Category Severity Location Status

Logical Issue Informational contracts/BoardChef.sol: 126, 150 Declined

Description

The uint256 is an unsigned integer, so the value of uint type is always greater than or equal to 0.

Recommendation

We recommend removing the validation.

Alleviation

No alleviation.

ButterSwap II Security Assessment

BCB-03 | Privileged Ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/BoardChef.sol: 79, 181 Acknowledged

Description

The owner of contract BoardChef has the permission to:

1. stop mining immediately and no more rewards will be issued by stopReward function.

2. emergency withdrawal of rewards in the contract by emergencyRewardWithdraw function.

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

Customer team response:

DAO/governance/voting module will be introduced in the future.

ButterSwap II Security Assessment

BCB-04 | Missing Emit Events

Category Severity Location Status

Coding Style Informational contracts/BoardChef.sol: 79, 181 Declined

Description

Some functions should be able to emit event as notifications to customers because they change the status

of sensitive variables.This suggestion applies to other similar codes.

Recommendation

Consider adding an emit after changing the status of variables.

Alleviation

No alleviation.

ButterSwap II Security Assessment

BCB-05 | Proper Usage of public And external Type

Category Severity Location Status

Gas Optimization Informational contracts/BoardChef.sol: 79, 125, 149, 171, 181 Resolved

Description

public functions that are never called by the contract could be declared external .

Recommendation

Consider using the external attribute for functions never called from the contract.

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

BCB-06 | Lack Of Judgment Conditions

Category Severity Location Status

Logical Issue Informational contracts/BoardChef.sol: 84 Resolved

Description

Although the parameters passed in in the contract are correct, because the getMultiplier function can

be called by external contracts, the parameters passed in from outside will result in incorrect results due to

lack of judgment conditions.

Recommendation

We recommend modifying as below:

11 functionfunction getMultipliergetMultiplier((uint256uint256 _from _from,, uint256uint256 _to _to)) publicpublic viewview returnsreturns ((uint256uint256))
{{

22 ifif ((_to _to <=<= startBlock startBlock |||| _from _from >=>= bonusEndBlock bonusEndBlock)) {{
33 returnreturn 00;;
44 }} elseelse ifif ((_from _from <=<= startBlock startBlock &&&& _to _to >=>=bonusEndBlockbonusEndBlock)) {{
55 returnreturn bonusEndBlock bonusEndBlock..subsub((startBlockstartBlock));;
66 }} elseelse ifif ((_from _from <=<= startBlock startBlock &&&& _to _to >> startBlock startBlock)) {{
77 returnreturn _to _to..subsub((startBlockstartBlock));;
88 }} elseelse ifif ((_from _from >=>= startBlock startBlock &&&& _to _to <=<= bonusEndBlock bonusEndBlock)) {{
99 returnreturn _to _to..subsub((_from_from));;

1010 }} elseelse {{
1111 returnreturn bonusEndBlock bonusEndBlock..subsub((_from_from));;
1212 }}
1313 }}

or modify the function visibility from public to internal .

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

BCB-07 | Missing checks of _startBlock

Category Severity Location Status

Logical Issue Informational contracts/BoardChef.sol: 83 Resolved

Description

In the constructor, the parameter _startBlock is missing sanity check for ensuring it's not too big. In case

it's too big, it might lead to underflow issue in the following code:

 functionfunction getMultipliergetMultiplier((uint256uint256 _from _from,, uint256uint256 _to _to)) internalinternal viewview returnsreturns ((uint256uint256)) {{
 ifif ((_to _to <=<= bonusEndBlock bonusEndBlock)) {{
 returnreturn _to _to..subsub((_from_from));;
 }} elseelse ifif ((_from _from >=>= bonusEndBlock bonusEndBlock)) {{
 returnreturn 00;;
 }} elseelse {{
 returnreturn bonusEndBlock bonusEndBlock..subsub((_from_from));;
 }}
 }}
 functionfunction pendingRewardpendingReward((addressaddress _user _user)) externalexternal viewview returnsreturns ((uint256uint256)) {{

 uint256uint256 multiplier multiplier == getMultipliergetMultiplier((poolInfopoolInfo..lastRewardBlocklastRewardBlock,, block block..numbernumber));;
 }}

Recommendation

We recommend adding sanity check for the parameter _startBlock .

Alleviation

The team heeded our advice and resolved the issue in commit

5ffb6955a216465da066834b4d2d9b9e7a3d454e.

ButterSwap II Security Assessment

BCB-08 | Logical issue of the reward amount treasury sent to BoardChef

Category Severity Location Status

Logical Issue Informational contracts/BoardChef.sol Acknowledged

Description

The contract uses the function transferRewardButterToTreasury() to send reward tokens to treasury

address. We would like to confirm with the client whether the treasury address is same with the contract

BoardChef? In addition, is the reward amount sent to treasury address same with the reward distributed

in the contract BoardChef?

Alleviation

The team stated the following: the treasury address will be an intermediate pool, once the reward is

accumulated to certain amount, the team will deploy a BoardChef instance to distribute the rewards.

ButterSwap II Security Assessment

BCB-09 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Major contracts/BoardChef.sol Acknowledged

Description

In the contract BoardChef , the role owner has the authority over the following function:

stop the reward period via the function stopReward()

retrieve any amount of rewardToken via the function emergencyRewardWithdraw()

Any compromise to the owner account may allow the hacker to take advantage of this contract BoardChef

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., Multisignature wallets.

Indicatively, here is some feasible suggestions that would also mitigate the potential risk at the different

level in term of short-term and long-term:

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

The team acknowledged this issue and they stated that they will use timelock or multi-signature wallet to

control all the owner functions in the future.

ButterSwap II Security Assessment

BCB-10 | Lack of reasonable boundary

Category Severity Location Status

Volatile Code Informational contracts/BoardChef.sol: 58, 81 Acknowledged

Description

State variable requiredBoardLevel can be only set in the constructor() function, and it can block user

from depositing. Thus, it would be better to have a reasonable upper and lower boundaries. Also, this

variable can declare with Immutable , since reading immutable variables is significantly cheaper than

reading from regular state variables since will not be stored in storage.

Recommendation

We recommend adding reasonable upper and lower boundaries to state variable requiredBoardLevel and

using an immutable state variable for it.

Alleviation

The team acknowledged this issue.

ButterSwap II Security Assessment

BDB-01 | Boolean Equality

Category Severity Location Status

Coding Style Informational contracts/ButterDao.sol: 80, 121, 181 Resolved

Description

Boolean constants can be used directly and do not need to be compare to true or false.

Recommendation

We recommend removing the equality to the boolean constant.For example:

enterStake():

11 ifif ((daoMembersdaoMembers[[msgmsg..sendersender]])) {{......}}

leaveStake():

11 requirerequire((daoMembersdaoMembers[[msgmsg..sendersender]],,"leaveStake: you are not dao member""leaveStake: you are not dao member"));;

leaveStakePrecheck():

11 ifif ((!!daoMembersdaoMembers[[msgmsg..sendersender]])) {{......}}

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

BDB-02 | Code Reuse

Category Severity Location Status

Coding Style Informational contracts/ButterDao.sol: 90, 163 Declined

Description

The code for calculating the threshold in the enterStake function is exactly the same as that in the

firstStakeThreshold function. We recommend to reuse this part of the code to keep the code concise.

Recommendation

We recommend modifying as below:

enterStake():

11 ifif ((daoMembersdaoMembers[[msgmsg..sendersender]])) {{
22
33 }} elseelse {{
44 uint256uint256 threshold threshold == firstStakeThresholdfirstStakeThreshold(());;
55
66 }}

firstStakeThreshold():

11 functionfunction firstStakeThresholdfirstStakeThreshold(()) publicpublic viewview returnsreturns ((uint256uint256)) {{......}}

Alleviation

No alleviation.

ButterSwap II Security Assessment

BDB-03 | Meaningless Calculation

Category Severity Location Status

Coding Style Informational contracts/ButterDao.sol: 97, 172 Declined

Description

The decimals of ButterToken and CreamToken are both 18, so there is no need to calculate the accuracy

range and it makes the calculation seems more redundant.

Recommendation

We recommend modifying as below:

11 functionfunction firstStakeThresholdfirstStakeThreshold(()) externalexternal viewview returnsreturns ((uint256uint256)) {{
22
33 uint256uint256 threshold threshold ==validTotalvalidTotal..divdiv((thresholdDividerthresholdDivider));;
44 returnreturn threshold threshold;;
55 }}

Alleviation

No alleviation.

ButterSwap II Security Assessment

BDB-04 | Proper Usage of public And external Type

Category Severity Location Status

Gas Optimization Informational contracts/ButterDao.sol: 64, 69, 76, 119, 234 Partially Resolved

Description

public functions that are never called by the contract could be declared external .

Recommendation

Consider using the external attribute for functions never called from the contract.

Alleviation

The team heeded some of our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

BDB-05 | Missing Emit Events

Category Severity Location Status

Coding Style Informational contracts/ButterDao.sol: 64, 68 Declined

Description

Some functions should be able to emit event as notifications to customers because they change the status

of sensitive variables.This suggestion applies to other similar codes.

Recommendation

Consider adding an emit after changing the status of variables.

Alleviation

No alleviation.

ButterSwap II Security Assessment

BDB-06 | Privileged Ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/ButterDao.sol: 119, 234 Acknowledged

Description

The owner of contract ButterDao has the permission to:

1. set whether to restrict users from withdrawing, if it is restricted, whether it is normal withdrawal or

emergency withdrawal, users need to deposit for a period more than 7 days and can only withdraw

on Sundays by leaveStake and emergencyWithdraw function.

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

Customer team response:

DAO/governance/voting module will be introduced in the future.

ButterSwap II Security Assessment

BDB-07 | Logical issue of leaveStake

Category Severity Location Status

Logical Issue Informational contracts/ButterDao.sol: 284 Acknowledged

Description

In the aforementioned line, the function emergencyWithdraw() can be called with an amount. However, the

function leaveStake() can not be called with an amount, the users have to leave with the total staking

amount.

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

The team acknowledged this issue and they stated that when the function leaveStake() is disabled in an

emergency case, the function emergencyWithdraw() can be used alternatively with a specific amount

because it's uncertain how many board tokens and dao tokens the user has.

ButterSwap II Security Assessment

BDB-08 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Major contracts/ButterDao.sol Acknowledged

Description

In the contract ButterDao , the role owner has the authority over the following function:

change treasury address via the function setTreasury()

change conditionTurnOn and thresholdDivider via the function switchCondition() and

changeThresholdDivider()

Any compromise to the owner account may allow the hacker to take advantage of this contract

ButterDao .

Recommendation

We advise the client to carefully manage the owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., Multisignature wallets.

Indicatively, here is some feasible suggestions that would also mitigate the potential risk at the different

level in term of short-term and long-term:

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

The team acknowledged this issue and they stated that they will use timelock or multi-signature wallet to

control all the owner functions in the future.

ButterSwap II Security Assessment

BTB-01 | Proper Usage of public And external Type

Category Severity Location Status

Gas Optimization Informational contracts/BoardToken.sol: 10, 14 Declined

Description

public functions that are never called by the contract could be declared external .

Recommendation

Consider using the external attribute for functions never called from the contract.

Alleviation

No alleviation.

ButterSwap II Security Assessment

BTB-02 | Privileged Ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/BoardToken.sol: 10, 14 Acknowledged

Description

The owner of contract BoardToken has the permission to:

1. mint token to account by mint function.

2. burn token from account by burn function.

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

Customer team response:

DAO/governance/voting module will be introduced in the future.

ButterSwap II Security Assessment

BVB-01 | Missing Emit Events

Category Severity Location Status

Coding Style Informational contracts/ButterVault.sol: 106, 115, 124, 133, 145, 154, 163, 172 Declined

Description

Some functions should be able to emit event as notifications to customers because they change the status

of sensitive variables.This suggestion applies to other similar codes.

Recommendation

Consider adding an emit after changing the status of variables.

Alleviation

No alleviation.

ButterSwap II Security Assessment

BVB-02 | Missing Zero Address Validation

Category Severity Location Status

Logical Issue Informational contracts/ButterVault.sol: 66 Resolved

Description

The given input is missing the sanity check for the non-zero address in the aforementioned line.

Recommendation

Consider adding a check like below:

constructor():

11 requirerequire((addressaddress((_token_token)) !=!= addressaddress((00)),, "_token address cannot be 0""_token address cannot be 0"));;
22 requirerequire((addressaddress((_receiptToken_receiptToken)) !=!= addressaddress((00)),, "_receiptToken address cannot be 0""_receiptToken address cannot be 0"));;
33 requirerequire((addressaddress((_masterchef_masterchef)) !=!= addressaddress((00)),, "_masterchef address cannot be 0""_masterchef address cannot be 0"));;
44 requirerequire((addressaddress((_butterDao_butterDao)) !=!= addressaddress((00)),, "_butterDao address cannot be 0""_butterDao address cannot be 0"));;
55 requirerequire((_admin _admin !=!= addressaddress((00)),, "_admin address cannot be 0""_admin address cannot be 0"));;
66 requirerequire((_treasury _treasury !=!= addressaddress((00)),, "_treasury address cannot be 0""_treasury address cannot be 0"));;

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

BVB-03 | Discussion For withdraw Function

Category Severity Location Status

Logical Issue Informational contracts/ButterVault.sol: 270 Acknowledged

Description

Under what circumstances will diff < balWithdraw? The butterToken deposited by the user will be

staked by the contract to masterChef for mining to obtain rewards. The reward is also butterToken , and

after the reward is withdrawn, it will be staked again to masterChef . The final balance in the contract

should be greater than the amount deposited by the user.

Alleviation

Customer team response:

This is to prevent MasterChef contract upgrades in the future, leaveStaking function will charge fees, etc.

This situation does not occur at present.

ButterSwap II Security Assessment

DAO-01 | Privileged Ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/DAOToken.sol: 315, 319 Acknowledged

Description

The owner of contract DAOToken has the permission to:

1. mint token to account by mint function.

2. burn token from account by burn function.

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

Customer team response:

DAO/governance/voting module will be introduced in the future.

ButterSwap II Security Assessment

LLC-01 | Meaningless Validation

Category Severity Location Status

Logical Issue Informational contracts/LuckyLuckyChef.sol: 351, 357, 366, 374, 378, 384 Declined

Description

The uint256 is an unsigned integer, so the value of uint type is always greater than or equal to 0. We

recommend to modify the check to be _amount>0 and remove the conditional judgment of _amount>0

afterwards.

Recommendation

We recommend modifying the validation as below: deposit():

11 requirerequire ((_amount _amount >> 00,, 'amount cannot be 0''amount cannot be 0'));;

withdraw():

11 requirerequire ((_amount _amount >> 00,, 'amount cannot be 0''amount cannot be 0'));;

Remove the conditional judgment of _amount>0 .

Alleviation

No alleviation.

ButterSwap II Security Assessment

LLC-02 | Divide Before Multiply

Category Severity Location Status

Mathematical Operations Informational contracts/LuckyLuckyChef.sol: 381 Resolved

Description

Solidity integer division might truncate. As a result, performing multiplication before division can

sometimes avoid loss of precision.

Recommendation

Consider ordering multiplication before division. For example:

11 user user..power power == user user..powerpower..mulmul((useruser..amountamount))..divdiv((formerAmountformerAmount));;

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

LLC-03 | Integer Overflow Risk

Category Severity Location Status

Mathematical Operations Informational contracts/LuckyLuckyChef.sol: 359 Resolved

Description

Using + in the method directly to calculate the value of the variable may overflow. SafeMath provides a

method to verify overflow, and it is safer to use the method provided.

Recommendation

Using the add() function in SafeMath library for mathematical operations. For example:

11 user user..power power == user user..powerpower..addadd((_amount_amount..mulmul((endBlockendBlock..subsub((blockblock..numbernumber))))));;

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

LLC-04 | Missing Zero Address Validation

Category Severity Location Status

Logical Issue Informational contracts/LuckyLuckyChef.sol: 139, 166 Declined

Description

The given input is missing the sanity check for the non-zero address in the aforementioned line.

Recommendation

Consider adding a check like below:

constructor():

11 requirerequire((addressaddress((_board_board)) !=!= addressaddress((00)),, "_board address cannot be 0""_board address cannot be 0"));;
22 requirerequire((addressaddress((_rewardToken_rewardToken)) !=!= addressaddress((00)),, "_rewardToken address cannot be 0""_rewardToken address cannot be 0"));;
33 requirerequire((_admin _admin !=!= addressaddress((00)),, "_admin address cannot be 0""_admin address cannot be 0"));;

setAdmin():

11 requirerequire((_admin _admin !=!= addressaddress((00)),, "_admin address cannot be 0""_admin address cannot be 0"));;

Alleviation

No alleviation.

ButterSwap II Security Assessment

LLC-05 | Risk For Weak Randomness

Category Severity Location Status

Logical Issue Informational contracts/LuckyLuckyChef.sol: 258, 284 Acknowledged

Description

The sumLuckyPower is obtained by encoding a random number with block.timestamp and

block.difficulty , and then generating the remainder of totalPower . The values of

block.timestamp ,block.difficulty and totalPower can be queried, so we think the private variable

sumLuckyPower based on inner operations can be predicted. If the parameter passed to numbersDrawn is

not a random number, then the result is not a random number.

Recommendation

Consider obtained the sumLuckyPower based on a third-part random service such as

chainlink(https://docs.chain.link/docs/get-a-random-number/).

Alleviation

Chainlink currently does not support the VRF function on the heco-chain, when it is supported, it will

switch to the function of obtaining random numbers from the chainlink service. Currently, the customer

team uses the chainlink service to obtain the real-time prices of BTC, HT and ETH to calculate the random

number based on the random algorithm, which increases the difficulty of inferring random number.

ButterSwap II Security Assessment

https://docs.chain.link/docs/get-a-random-number/

LLC-06 | Proper Usage of public And external Type

Category Severity Location Status

Gas
Optimization

Informational
contracts/LuckyLuckyChef.sol: 166, 171, 176, 213, 226, 274, 350, 3
73 Resolved

Description

public functions that are never called by the contract could be declared external .

Recommendation

Consider using the external attribute for functions never called from the contract.

Alleviation

The team heeded our advice and changed related code. Code change was applied in commit

c5f3f012c33f7c3d2c4621f92e05916b51381d58.

ButterSwap II Security Assessment

LLC-07 | Redundant Data

Category Severity Location Status

Logical Issue Informational contracts/LuckyLuckyChef.sol: 373 Declined

Description

If the user withdraws all deposits, then the user address should be removed from userAddresses .

Although a new lottery is started, the user's power will be initialized to 0 and the user will not get rewards,

but the data is redundant data and has no meaning.

Recommendation

We recommend modifying as below:

11 ifif((formerAmount formerAmount ==== _amount _amount)){{
22 deletedelete userAddresses userAddresses[[msgmsg..sendersender]];;
33 }}

Alleviation

No alleviation.

ButterSwap II Security Assessment

LLC-08 | Privileged Ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/LuckyLuckyChef.sol: 176 Acknowledged

Description

The owner of contract LuckyLuckyChef has the permission to:

1. withdraw rewardToken to owner by withdrawRewardToken function.

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

Customer team response:

DAO/governance/voting module will be introduced in the future.

ButterSwap II Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

ButterSwap II Security Assessment

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

ButterSwap II Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

ButterSwap II Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

ButterSwap II Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

ButterSwap II Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

ButterSwap II Security Assessment

