
Security Assessment

ButterSwap Ⅲ
Aug 17th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Unknown Imported Source File

BBB-01 : Privileged ownership in `ButterBlindBoxFactory` contract

BBB-02 : Centralized risk in `swapAndSendToFee`

BBB-03 : SafeMath Not Used

BBB-04 : 3rd party dependencies

BBB-05 : Redundant comparison against zero

BBB-06 : Lack of input validation

BBB-07 : Risk For Weak Randomness

BBS-01 : Privileged ownership in `BlindBoxStruct` contract

BBS-02 : Variable could be declared as `constant`

BBS-03 : Declaration Naming Convention

BBS-04 : Lack of document for special bonus

BBT-01 : Limit the Execution of Function `safeMint`

BBT-02 : Misleading Constructor

BCT-01 : Misleading Constructor

BCT-02 : Limit the Execution of Function `safeMint` and `activateCard`

DTC-01 : Centralized risk in `swapAndSendToFee`

DTC-02 : Lack of input validation

DTC-03 : Redundant comparison against zero

DTC-04 : Privileged ownership in `DinnerTableChef` contract

RGC-01 : Unused variable

RGC-02 : Make initializer check stricter

Appendix

Disclaimer

About

ButterSwap Ⅲ Security Assessment

Summary
This report has been prepared for ButterSwap to discover issues and vulnerabilities in the source code of

the ButterSwap Ⅲ project as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

ButterSwap Ⅲ Security Assessment

Overview

Project Summary

Project Name ButterSwap Ⅲ

Platform Heco

Language Solidity

Codebase https://github.com/butter-swap/butterswap-nft

Commit
3f5f841010aa5ab9e362bfeb7de81aeefed4c22a
98046909586ee42bdb43c00581af8a1c4257a6fa

Audit Summary

Delivery Date Aug 17, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 5 0 0 5 0 0

Medium 2 0 0 2 0 0

Minor 2 0 0 2 0 0

Informational 13 0 0 1 0 12

Discussion 0 0 0 0 0 0

ButterSwap Ⅲ Security Assessment

https://github.com/butter-swap/butterswap-nft

Audit Scope

ID File SHA256 Checksum

BBS BlindBoxStruct.sol c5540286284d5daa9f988b8bbf63cec3ac1ae1896b58b74b6dcf8376e1a763da

BBT BlindBoxToken.sol 9ada60ebe9aac50c1c23333320132cab72c6004c23868658bd7a3384ea85a119

BBB ButterBlindBoxFactory.sol 6ad898e0c72f37b025a195a31c5715ab5c0fc8dea275d1318a28dcebe957efce

BCT ButterCardToken.sol ed2cc45f528b4ed205597849e57a17279e7b7225eb782a06cf0ada87d4160831

DTC DinnerTableChef.sol 5ec29be9d0f5bea29294927e99dbd34623f7af223e558d2384a45ff68f341fb1

RGC RandomGenerator.sol dc80fc1fa613f56cf4086b74709a836b515428553fdbae1131f1440b42e8954b

ButterSwap Ⅲ Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01 Unknown Imported Source File Volatile Code Informational Acknowledged

BBB-01
Privileged ownership in
ButterBlindBoxFactory contract

Centralization /
Privilege

Major Acknowledged

BBB-02 Centralized risk in swapAndSendToFee
Centralization /
Privilege

Medium Acknowledged

BBB-03 SafeMath Not Used Mathematical Operations Informational Resolved

BBB-04 3rd party dependencies Control Flow Minor Acknowledged

BBB-05 Redundant comparison against zero Language Specific Informational Resolved

BBB-06 Lack of input validation Volatile Code Informational Resolved

BBB-07 Risk For Weak Randomness Volatile Code Minor Acknowledged

BBS-01
Privileged ownership in
BlindBoxStruct contract

Centralization /
Privilege

Major Acknowledged

BBS-02
Variable could be declared as
constant

Gas Optimization Informational Resolved

BBS-03 Declaration Naming Convention Coding Style Informational Resolved

BBS-04 Lack of document for special bonus Logical Issue Informational Resolved

ButterSwap Ⅲ Security Assessment

22
Total Issues

Critical 0 (0.00%)

Major 5 (22.73%)

Medium 2 (9.09%)

Minor 2 (9.09%)

Informational 13 (59.09%)

Discussion 0 (0.00%)

ID Title Category Severity Status

BBT-01
Limit the Execution of Function
safeMint

Logical Issue,
Centralization /
Privilege

Major Acknowledged

BBT-02 Misleading Constructor Volatile Code Informational Resolved

BCT-01 Misleading Constructor Volatile Code Informational Resolved

BCT-02
Limit the Execution of Function
safeMint and activateCard

Logical Issue,
Centralization /
Privilege

Major Acknowledged

DTC-01 Centralized risk in swapAndSendToFee
Centralization /
Privilege

Medium Acknowledged

DTC-02 Lack of input validation Volatile Code Informational Resolved

DTC-03 Redundant comparison against zero Language Specific Informational Resolved

DTC-04
Privileged ownership in
DinnerTableChef contract

Centralization /
Privilege

Major Acknowledged

RGC-01 Unused variable Gas Optimization Informational Resolved

RGC-02 Make initializer check stricter Logical Issue Informational Resolved

ButterSwap Ⅲ Security Assessment

GLOBAL-01 | Unknown Imported Source File

Category Severity Location Status

Volatile Code Informational Global Acknowledged

Description

The imported source files:

1. ../libs/math/SafeMath.sol

2. ../libs/token/HRC20/IHRC20.sol

3. ../libs/token/HRC20/SafeHRC20.sol

4. ../libs/access/Ownable.sol

5. ../ILuckyLucky.sol

6. ../libs/token/HRC721/IHRC721Receiver.sol

7. ../IRandomNumberGenerator.sol

8. ../libs/utils/Counters.sol

9. ../libs/token/HRC721/extensions/HRC721Enumerable.sol

are unknown.

Alleviation

The development team responded as shown below:

1. ../ILuckyLucky.sol and ../IRandomNumberGenerator.sol are same as files in the batch-2 audit.

2. HRC20 HRC721 Ownerable are standard library.

ButterSwap Ⅲ Security Assessment

BBB-01 | Privileged ownership in ButterBlindBoxFactory contract

Category Severity Location Status

Centralization /
Privilege

Major
ButterBlindBoxFactory.sol: 19, 65, 70, 75, 80, 85, 90, 95, 99, 1
07, 116 Acknowledged

Description

The owner of the contract ButterBlindBoxFactory has the permission to call:

1. setAdmin ,

2. setTreasury ,

3. setPoolAddress ,

4. setBurnRate ,

5. setTreasuryRate ,

6. setDiscount

7. setUseChainLinkRandom

8. setMaxCardSlots

9. transferCardTokenOwner

10. transferBoxTokenOwner

without obtaining the consensus of the community.

Recommendation

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or via smart-contract based accounts with enhanced security practices, f.e.

Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

ButterSwap Ⅲ Security Assessment

The development team responded that the owner address will use Multisignature wallets, the admin

address will be given to community/board to manage and they will renounce ownership in the futrue.

ButterSwap Ⅲ Security Assessment

BBB-02 | Centralized risk in swapAndSendToFee

Category Severity Location Status

Centralization / Privilege Medium ButterBlindBoxFactory.sol: 173 Acknowledged

Description

11 //DinnerTableChef//DinnerTableChef
22 functionfunction unlockSlotunlockSlot(()) externalexternal {{
33
44 butter butter..safeTransfersafeTransfer((treasurytreasury,, treasuryFee treasuryFee));;
55 }}

11 //ButterBlindBoxFactory.sol//ButterBlindBoxFactory.sol
22 functionfunction buyBlindBoxbuyBlindBox((
33 uint256uint256 boxId boxId,,
44 uint256uint256 amount amount
55)) externalexternal {{
66
77 butter butter..safeTransfersafeTransfer((treasurytreasury,, treasuryFee treasuryFee));;
88
99 }}

The unlockSlot function of contract DinnerTableChef and the function buyBlindBox of contract

ButterBlindBoxFactory call the butter.safeTransfer function with the to address specified as treasury .

As a result, over time the treasury address will accumulate a significant portion of CAKE tokens. If the

treasury is an EOA (Externally Owned Account), mishandling of its private key can have devastating

consequences to the project as a whole.

Recommendation

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or via smart-contract based accounts with enhanced security practices, f.e.

Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

ButterSwap Ⅲ Security Assessment

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

The development team responded as below: the butter transferred to treasury address will be made as a

board pool reward for board members every several days or exceeding a certain amount. so the amount

won’t be too large.

ButterSwap Ⅲ Security Assessment

BBB-03 | SafeMath Not Used

Category Severity Location Status

Mathematical Operations Informational ButterBlindBoxFactory.sol: 221~226, 239 Resolved

Description

SafeMath from OpenZeppelin is not used in the following functions which makes them possible for

overflow/underflow and will lead to an inaccurate calculation result.

uint256uint256 totalPower_ totalPower_ == totalPowertotalPower((boxIdboxId));;
uint256uint256 randomNumber randomNumber == uint256uint256((keccak256keccak256((
 abi abi..encodeencode((
 block block..timestamptimestamp,, block block..difficultydifficulty,,
 priceETH priceETH,, priceBTC priceBTC,, priceHT priceHT,,
 block block..gaslimitgaslimit,, gasleftgasleft(()),, block block..coinbasecoinbase))
)))) %% totalPower_ totalPower_;;

uint256uint256 randomNumber randomNumber == _randomNumber _randomNumber %% totalPowertotalPower((boxIdboxId));;

The return value of the function totalPower can be 0 that will make the calculation failed.

Recommendation

We advise the client to use OpenZeppelin's SafeMath library for all of the mathematical operations.

uint256uint256 totalPower_ totalPower_ == totalPowertotalPower((boxIdboxId));;
uint256uint256 randomNumber randomNumber == uint256uint256((keccak256keccak256((
 abi abi..encodeencode((
 block block..timestamptimestamp,, block block..difficultydifficulty,,
 priceETH priceETH,, priceBTC priceBTC,, priceHT priceHT,,
 block block..gaslimitgaslimit,, gasleftgasleft(()),, block block..coinbasecoinbase))
))))..modmod((totalPower_totalPower_));;

ButterSwap Ⅲ Security Assessment

uint256uint256 randomNumber randomNumber == _randomNumber _randomNumber..modmod((totalPowertotalPower((boxIdboxId))));;

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

BBB-04 | 3rd party dependencies

Category Severity Location Status

Control Flow Minor ButterBlindBoxFactory.sol: 60~62 Acknowledged

Description

The contract is serving as the underlying entity to interact with third-party EACAggregatorProxy protocols.

The scope of the audit would treat those 3rd party entities as black boxes and assume their functional

correctness. However, in the real world, 3rd parties may be compromised that led to assets being lost or

stolen.

priceFeedBTC priceFeedBTC == AggregatorV3InterfaceAggregatorV3Interface((0xD5c40f5144848Bd4EF08a9605d860e727b9915130xD5c40f5144848Bd4EF08a9605d860e727b991513));;
priceFeedHT priceFeedHT == AggregatorV3InterfaceAggregatorV3Interface((0x8EC213E7191488C7873cEC6daC8e97cdbAdb7B350x8EC213E7191488C7873cEC6daC8e97cdbAdb7B35));;
priceFeedETH priceFeedETH == AggregatorV3InterfaceAggregatorV3Interface((0x5Fa530068e0F5046479c588775c157930EF0Dff00x5Fa530068e0F5046479c588775c157930EF0Dff0));;

Recommendation

We understand that the business logic of the ButterBlindBoxFactory requires the interaction

EACAggregatorProxy protocol for acquiring the price of BTC , HT and ETH . We encourage the team to

constantly monitor the statuses of those 3rd parties to mitigate the side effects when unexpected activities

are observed.

Alleviation

The development team responded that they only use the third party contract to get the prices, and the

prices are only used to be as part of seed-parameters to generate a random number.

ButterSwap Ⅲ Security Assessment

BBB-05 | Redundant comparison against zero

Category Severity Location Status

Language Specific Informational ButterBlindBoxFactory.sol: 81, 86 Resolved

Description

x >= 0 will be always true if x is a uint256.

Recommendation

Consider removing redundant comparisons.

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

BBB-06 | Lack of input validation

Category Severity Location Status

Volatile Code Informational ButterBlindBoxFactory.sol: 56~59 Resolved

Description

The assigned values to address type variables butter , admin , blindBox , and butterCard should be verified

as non-zero values to prevent error.

Recommendation

Check that the addresses are not zero in the constructor, like below:

requirerequire((butterCard butterCard !=!= addressaddress((00))));;

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

BBB-07 | Risk For Weak Randomness

Category Severity Location Status

Volatile Code Minor ButterBlindBoxFactory.sol: 203~210 Acknowledged

Description

A self-defined function is used to generate the random number.

Recommendation

Consider mixing a seed value based on the trusted 3rd party random service.

Alleviation

The development team responded that they will use chainlink vrf to generate a random number when

chainlink supports heco chain and the useChainLinkRandom is for the switching.

ButterSwap Ⅲ Security Assessment

BBS-01 | Privileged ownership in BlindBoxStruct contract

Category Severity Location Status

Centralization / Privilege Major BlindBoxStruct.sol: 6, 116, 134, 151, 176, 208 Acknowledged

Description

The owner of the contract BlindBoxStruct has the permission to call:

1. pushBox ,

2. updateBoxPrice ,

3. pushFamily ,

4. pushSpecial ,

5. pushCardMetaData ,

without obtaining the consensus of the community.

Recommendation

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or via smart-contract based accounts with enhanced security practices, f.e.

Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

The development team responded that BlindBoxStruct is just as the farther contract of

ButterBlindBoxFactory . And these functions are for the operation using. And some day in the future the

admin will be offered to the board.

ButterSwap Ⅲ Security Assessment

BBS-02 | Variable could be declared as constant

Category Severity Location Status

Gas Optimization Informational BlindBoxStruct.sol: 55, 86~93 Resolved

Description

Variables pointsDecimal , MAX_ENERGY_POINT , MAX_RECYCLE_POINT ,

MAX_FAMILY_DINNER_POOL_BONUS , MAX_FAMILY_FARMING_BONUS , MAX_SPECIAL_DINNER_POOL_BONUS , MAX_SPECIAL_FARM

ING_BONUS and MIN_PRICE could be declared as constant since these state variables are never to be

changed.

Recommendation

We recommend declaring those variables as constant .

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

BBS-03 | Declaration Naming Convention

Category Severity Location Status

Coding Style Informational BlindBoxStruct.sol: 105, 188 Resolved

Description

The linked declarations do not conform to the Solidity style guide with regards to its naming convention.

Particularly:

1. camelCase : Should be applied to function names, argument names, local and state variable names,

modifiers

2. UPPER_CASE : Should be applied to constant variables

3. CapWords : Should be applied to contract names, struct names, event names and enums

Recommendation

We advise that the linked event name is adjusted to properly conform to Solidity's naming convention.

eventevent NewSpecialPushedNewSpecialPushed((uint256uint256 specialId specialId));;

emitemit NewSpecialPushedNewSpecialPushed((specialIdspecialId));;

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

BBS-04 | Lack of document for special bonus

Category Severity Location Status

Logical Issue Informational BlindBoxStruct.sol: 275 Resolved

Description

Lack of documentation in the client's official website(https://docs.butterswap.me/products/nft) for the

detailed rules of the special bonus.

Alleviation

The development team heeded our advice and updated the docs.

ButterSwap Ⅲ Security Assessment

https://docs.butterswap.me/products/nft

BBT-01 | Limit the Execution of Function safeMint

Category Severity Location Status

Logical Issue, Centralization / Privilege Major BlindBoxToken.sol: 28 Acknowledged

Description

The owner account can mint nft to anyone at any time by the function safeMint . Any compromise to the

owner account may allow the hacker to take advantage of this function and eventually damage the

contract.

Recommendation

Consider refactoring the code to make the function safeMint only be called by the contract

ButterBlindBoxFactory .

Alleviation

The development team responded that the owner account is ButterBlindBoxFactory, and that would never

change unless they need to upgrade the ButterBlindBoxFactory contract. They will make sure the new

owner will be the new Factory contract. Users should confirm that the owner's address is the

ButterBlindBoxFactory contract before using this protocol.

ButterSwap Ⅲ Security Assessment

BBT-02 | Misleading Constructor

Category Severity Location Status

Volatile Code Informational BlindBoxToken.sol: 25~26 Resolved

Description

The code as below implies that it is a test token:

constructorconstructor(()) HRC721HRC721(("Test Blind Box Token""Test Blind Box Token",, "TBOX""TBOX")) publicpublic {{}}

Recommendation

Considering refactoring the code as below:

constructorconstructor(()) HRC721HRC721(("Butter Blind Box Token""Butter Blind Box Token",, "BBOX""BBOX")) publicpublic {{}}

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

BCT-01 | Misleading Constructor

Category Severity Location Status

Volatile Code Informational ButterCardToken.sol: 28~29 Resolved

Description

The code as below implies that it is a test token:

constructorconstructor(()) HRC721HRC721(("Test Card Token""Test Card Token",, "TCARD""TCARD")) publicpublic {{}}

Recommendation

Considering refactoring the code as below:

constructorconstructor(()) HRC721HRC721(("Butter Card Token""Butter Card Token",, "BCARD""BCARD")) publicpublic {{}}

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

BCT-02 | Limit the Execution of Function safeMint and activateCard

Category Severity Location Status

Logical Issue, Centralization / Privilege Major ButterCardToken.sol: 31~46 Acknowledged

Description

The owner account can mint nft to anyone at any time by the function safeMint . The owner account can

update activateBlock by the function activateCard . Any compromise to the owner account may allow the

hacker to take advantage of this function and eventually damage the contract.

Recommendation

Consider refactoring the code to make the function safeMint and activateCard only be called by the

contract ButterBlindBoxFactory .

Alleviation

The development team responded that the owner account is ButterBlindBoxFactory, and that would never

change unless they need to upgrade the ButterBlindBoxFactory contract. They will make sure the new

owner will be the new Factory contract. Users should confirm that the owner's address is the

ButterBlindBoxFactory contract before using this protocol.

ButterSwap Ⅲ Security Assessment

DTC-01 | Centralized risk in swapAndSendToFee

Category Severity Location Status

Centralization / Privilege Medium DinnerTableChef.sol: 316 Acknowledged

Description

11 //DinnerTableChef//DinnerTableChef
22 functionfunction unlockSlotunlockSlot(()) externalexternal {{
33
44 butter butter..safeTransfersafeTransfer((treasurytreasury,, treasuryFee treasuryFee));;
55 }}

11 //ButterBlindBoxFactory.sol//ButterBlindBoxFactory.sol
22 functionfunction buyBlindBoxbuyBlindBox((
33 uint256uint256 boxId boxId,,
44 uint256uint256 amount amount
55)) externalexternal {{
66
77 butter butter..safeTransfersafeTransfer((treasurytreasury,, treasuryFee treasuryFee));;
88
99 }}

The unlockSlot function of contract DinnerTableChef and the function buyBlindBox of contract

ButterBlindBoxFactory call the butter.safeTransfer function with the to address specified as treasury .

As a result, over time the treasury address will accumulate a significant portion of CAKE tokens. If the

treasury is an EOA (Externally Owned Account), mishandling of its private key can have devastating

consequences to the project as a whole.

Recommendation

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or via smart-contract based accounts with enhanced security practices, f.e.

Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the

private key;

ButterSwap Ⅲ Security Assessment

Introduction of a DAO / governance / voting module to increase transparency and user involvement.

Alleviation

The development team responded as below: the butter transferred to treasury address will be made as a

board pool reward for board members every several days or exceeding a certain amount. so the amount

won’t be too large.

ButterSwap Ⅲ Security Assessment

DTC-02 | Lack of input validation

Category Severity Location Status

Volatile Code Informational DinnerTableChef.sol: 104~110 Resolved

Description

The assigned values to address type variables butterCard , factory , butter , admin , operator , and

treasury should be verified as non-zero values to prevent error.

Recommendation

Check that the addresses are not zero in the constructor, like below:

requirerequire((butterCard butterCard !=!= addressaddress((00))));;

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

DTC-03 | Redundant comparison against zero

Category Severity Location Status

Language Specific Informational DinnerTableChef.sol: 198, 192 Resolved

Description

x >= 0 will be always true if x is a uint256.

Recommendation

Consider removing redundant comparisons.

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

DTC-04 | Privileged ownership in DinnerTableChef contract

Category Severity Location Status

Centralization / Privilege Major DinnerTableChef.sol: 384 Acknowledged

Description

The owner of the contract DinnerTableChef has the permission to:

1. set admin and treasury ,

2. withdraw the balance of the reward token by calling the function

stopRewardAndEmergencyWithdrawAllButter ,

without obtaining the consensus of the community.

The admin of the contract DinnerTableChef has the permission to:

1. set operator , defaultUnlockSlotPrice , slotPrice , burnRate , and treasuryRate

without obtaining the consensus of the community.

The operator of the contract DinnerTableChef has the permission to:

1. update rewardPerBlock

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

The development team responded that they’ll renounce ownership and give admin to board. The operator

permission is combined with the whole ecosystem, everyday 1/15 of total pool butter would be the new

reward of this day.

ButterSwap Ⅲ Security Assessment

RGC-01 | Unused variable

Category Severity Location Status

Gas Optimization Informational RandomGenerator.sol: 69~75 Resolved

Description

Some unused variables are declared. Remove or comment out the variable name.

 eventevent NewBoxPushedNewBoxPushed((uint256uint256 boxId boxId,, uint256uint256 price price,, uint256uint256 totalSupply totalSupply));;
 eventevent BoxPriceUpdatedBoxPriceUpdated((uint256uint256 boxId boxId,, uint256uint256 price price));;
 eventevent NewFamilyPushedNewFamilyPushed((uint256uint256 familyId familyId));;
 eventevent newSpecialPushednewSpecialPushed((uint256uint256 specialId specialId));;
 eventevent NewCardPushedNewCardPushed((uint256uint256 boxId boxId,, uint256uint256 level level,, uint256uint256 totalSupply totalSupply));;
 eventevent CardTokenOwnerChangedCardTokenOwnerChanged((addressaddress newAddress newAddress));;
 eventevent BoxTokenOwnerChangedBoxTokenOwnerChanged((addressaddress newAddress newAddress));;

Recommendation

We recommend removing the unused variables in RandomGenerator.sol .

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

RGC-02 | Make initializer check stricter

Category Severity Location Status

Logical Issue Informational RandomGenerator.sol: 46~47 Resolved

Description

OpenZeppelin has removed _isConstructor() check in the initializer modifier to make it stricter during

construction.

Reference:https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2531/files

Recommendation

Consider removing _isConstructor() check in the initializer modifier.

Alleviation

The development team heeded our advice and resolved this issue in commit

c7c37400efe5c1ada1f3c313af6f31a33cf010e8.

ButterSwap Ⅲ Security Assessment

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2531/files

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

ButterSwap Ⅲ Security Assessment

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

ButterSwap Ⅲ Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

ButterSwap Ⅲ Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

ButterSwap Ⅲ Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

ButterSwap Ⅲ Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

ButterSwap Ⅲ Security Assessment

